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Abstract

We propose an estimator of the stability parameter & of a stable distribution
through the idea of “wrapping." The advantage of this method, apart from being simple to
calculate, is that the estimatlor can be shown to be consistent and asymptotically normal. The,
asymptotic variance is also easy to calculate so that one can actually provide confiderice
intervals and carry out inference on ¢ for modestly large samples. The performance of the
estimator, the confidence intervals and coverage probabilities are studied using simulated

data and provide highly satisfactory results, compared to many existing procedures.
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1. Introduction

Sample data arising in a wide vatiety of applications like economics (Mandelbrot, 1963),
telephony (Stuck and Kleiner, 1974), radar clutter modelling (Jakeman and Pusey, 1976), and
environmental sciences (Kogan and Manolakis, 1996) show large variability, In addition the
histogram also exhibits a sharp peak. The family of stable distributions have been shown to be
very useful and appropriate in modeling such heavy tailed distributions (Feller, 1971, Zolotarev,
1986, Samorodnitsky and Taqqu, 1994).
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Stable distributions are an attractive option for modeling for two reasons. The first being that the
sum of i.i.d. stable random variables will retain the shape of the original '

distribution, which is known as the stability property (Feller 1971). For example, one would like
the distribution of the sum of daily changes in the stock price over a week to match the
distribution of the weekly change. Secondly the stable distributions constitute a domain of
attraction for sums of independent random variables. That is, if the sum of independently and
identically distributed (i.i.d.) random variables converges in distribution, then the limiting
distribution belongs to the stable family. This is desirable for modeling a phenomenon that is a
superposition of a large number of random events. However, the stable distribution suffers from
two major drawbacks. It lacks a simple closed form expression for the probability density
function except in a few cases like the Gaussian (with @ =2), Cauchy (witha =1) and Levy
distributions. The second problem in using stable distributions with index of stability
o € (0,2) is that it possesses absolute moments only of order p < ¢ . In particular, the variance

of these random variables is infinite except for the case of the normal distribution. This leads to a
serious problem in estimation, since in the absence of nice asymptotic properties, providing
confidence intervals or carrying out inference becomes very difficult.

The parameter that is of most interest in applications is the stability index a which determines
how ““heavy" the tail is. Various estimators have been proposed for estimation of & which
generally fall in three categories: maximum likelihood, quantile methods and characteristic
function based methods. There are many estimators based around the so-called ""Hill estimator."
Pictet, Dacorogna and Muller (1998) carry out a detailed simulation study of the performance of
four such estimators, the Pickands estimator (Pickands, 1975, Dekkers and De Haan, 1989), the
Hill estimator, De Haan and Resnick estimator (De Haan and Resnick, 1980) and a modified Hill
estimator (Dekkers et. al., 1990). These ““Hill-type estimators” are based on the & largest
observations in the sample. These estimators have nice asymptotic properties and are based on
sound theory, but are not very satisfactory in practice (Resnick, 1997, 1998, Pictet, Dacorogna
and Muller, 1998). These estimators vary considerably with the choice of k. Hall and Welsh
(1985) derive an optimal k that depends on some parameters of the unknown distribution. Pictet,
Dacorogna and Muller (1998) discuss estimation of these parameters and the performance of the
resultant estimator. Drees and Kaufman (1998) propose a sequential approach to this problem
and show that their estimator is asymptotically as efficient as the Hill estimator based on the
optimal k. Drees (2001) examines asymptotic minimax risk bounds under zero-one loss and
their implications for confidence intervals.

DuMouchel (1973) proposed a maximurn likelihood type algorithm, which although theoretically
superior, is computationally very expensive. A program to compute the maximum likelihood
estimate is available online at http://academic2.american.edw/~jpnolan/. This program needs to
be initialized, for which the simple estimator proposed in this paper can be a natural candidate.
Quantile methods are based on order statistics and are computationally inexpensive. Fama and
Roll (1971) proposed the first quantile method which was improved later by McCulloch (1986).
McCulloch's estimator works for & € [0.6,2.0] (Adler, Feldman and Gallagher, 1998). Of the
estimation techniques that use characteristic functions, the method by Koutrouvelis (1981) was
shown to have the best performance. An improved version that greatly reduces the computation
was presented by Kogon and Williams (1998). The McCulloch's estimator based on matching the
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quantiles and the Koutrouvelis estimator based on regression using the sample characteristic
function give the best performance. For the McCulloch's estimator, the lack of asymptotics and
the need to carty all the quantile tables makes it a bit cumbersome. For the Koutrouvelis
estimator the choice of points where thie regression sample characterisic function is estimated is
based on a look-up table. Koutrouvelis and Baur (1982) have shown consistency and asymptotic
normality for this estimator when these regression points are fixed. In practice, these points are
determined based on the sample size and the value of a. Recently, Deo (2000) has provided
estimators of the tail index based on U-statistics.

Asymptotic normality is proved for these estimators and are shown to have uniformly better
efficiency than the regression based estimator of Koutrouvelis (1980). Deo (2000) also provides a
goodness of fit test based on his estimator.

We propose an estimator based on the idea of Twrapping." It is a trigonometric method of
moments estimator derived using the simple properties of circular distributions. The proposed
estimator is scale invariant. The performance of this estimator as compared with that of the Hill
estimator is marginally better for o close to 1 but much superior for a close to 2 (compare Kogan
and Williams (1998), Figure 4a and Table IIT of this paper). Note that an optimal choice of k for
minimizing the MSE of the Hill estimator would result in a larger bias (Pictet, Dacorogna and
Muller, 1998). However, the performance of our estimator is worse than that of the McCulloch's
or the Koutrouvelis estimators. The advantage of the proposed estimator, apart from being simple
to calculate, is that it is consistent and asymptotically normal. The asymptotic variance is also
easy to calculate so that one can actually provide confidence intervals and carry out inference on
« for moderately large samples. Inference can also be made using this estimator on whether the
sample is from a stable population.

1.1 Stable Distributions

We denote an a —stable random variable by S, (o, 8,1, where
ae(02], Be[-11],0 R, , and u e Rare the indexes of stability, skewness, scale and shift,
respectively. When 8 =0, the sub-family S, (0,0, 1) is symmetric about & . The problem with
the stable family is that the density does not admit a closed form expression except in two cases.
These are the well known cases of S, (o0, #) or the normal family with mean z and variance
2N’ and the Cauchy family S, (N,0,:) with density 20 /[z((x— 1)* +4c?)]. The problem of not

having a closed form of the density is somewhat mitigated by the presence of a closed form for
the characteristic function ¢(z) given by

exp{-o“ |t|* [1=iBsgn(t) tan<=] +it}, if ae©)u(,2],

P() = B

2B . . » 1.1
exp{-o | ¢ |[1+——(signt)In|t | +iut}, if @=1.
z

1.2 Wrapped Stable Distributions

The curse of infinite variance of a stable random variable .Y can be overcome, without losing
the information on the tail index a by the following simple device of wrapping. Corresponding
to any linear random variable X', say with density g and distribution function G, one may define a
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circular random variable @ =X mod(27). Such circular random variables 0 <& <27 represent
directions in two-dimensions and there is considerable theory behind these. See Jammalamadaka
and SenGupta (2001, Sections 2.2.6 - 2.2.8), for more information on wrapped circular models.
The density f and the distribution function F of such a wrapped variable, & are obtained by the
usual transformation (many-to-one in this case) theory, giving

flu)= kig(u + 2k7), for u €[0,27), (1.2)
and
Fw)= S[G + 2kn) -GQkr)l,  for u[0,27). (1.3)
The density functio;1°;f such a wrapped « — stable random variable for @ €[0,27) , is given by
110 =+~ S oxpt-o” jYeost 0 - ~o* [ pran T3, a4

when @ € (0,))w(1,2], and & can be conveniently redefined as u:=umod(27) . Sometimes, &

is reparametrized by using the concentration parameter p = exp{-oc“} (see Jammalamadaka
and SenGupta, 2001 equation (2.2.18)). - .

The main results that we need to know about such wrapped variables & are (i) the characteristic
function for such periodic variables need only be calculated at integer points (and these
correspond to the Fourier coefficients in the Fourier series expansion of the density function,
which is periodic) and (ii) the value of its characteristic function at these integer values is

“*identical to that of X (see Jammalamadaka and SenGupta, 2001 Proposition 2.1).

In this paper we consider the problem of estimating the stability index for the symmetric stable
family S, (0,0, 4) with f=0. Then from (1.1), the corresponding wrapped variable in the

class S, (c,0, ) has the characteristic function (or Fourier coefficients)

Ele'SH) =BT 8 =eiTH.; (L.5)
where ¢ is an integer. Estimation of ¢ and inference for wrapped symmetric o — stable circular
models is studied in Gatto and Jammalamadaka (2001) where the stability index « is assumed to

be knowﬁ. On the other hand, the focus here is the estimation of & and it is indeed fortuitous
that our estimator given in the next section, is independent of the two nuisance parameters u

and o .

1.3 Estimation of
We now propose what could be called the “‘trigonometric method of moment estimator" for
« . Recall that if we define

from (1.5),
E[e"® "] = E[cos( — ) +isin@@ — )= p,
which implies that
He, = Eloos(0— )] = p=cxp{~c“} and pg 6 -m]=0. (1.6)
Similarly, taking ¢ =2 in (1.5), we conclude that




Estimate of the Index of Stability 13

M =Elcos(A0-m)]=p* =exp{-c" 2 } and p; =E[sin2@-m)]=0. ~ (L7)
The method of (trigonometric) moments estimation involves equating these theoretical moments
in equations (1.6) and (1.7) to the corresponding sample moments and solving for the parameters
of interest. The sample moments are obtained as follows: Corresponding to i.i.d. observations
X, Xy, X, froma S, (0,0, 1) family, define the wrapped stable random variables

X mod 2 if X >0
6,=X;mod2z={" "CF _ .(1.8)
: 27 —(| X |mod 2r) if X <0

i=12,..,n. Define the sequences of statistics

C,=1%cos@) €, =L%cos26)
ni=1 1=l

S, =<3sin@) S, =L$sino) (1.9)
ni=l ni=1 .

The moment estimator of the unknown mean direction A is given by the quadrant-specific tan™ N

jt =arctan(S,, /C,) = 6,, say.:
Then it is simple to verify that

R, =13 cos6,-8) = JC7 + 52 (1.10)
n =

R2n = licos 2(01 _éJ) = Cll:t + S22n

n il .11
are the corresponding sample central trigonometric moments of order 1 and order 2. Therefore,
equating (1.6) and (1.7) to (1.10) and (1.11) respectively and solving for & , we get an estimate
fore .

Definition: The estimate of o based on wrapped stable random variables is given by
G=-Lin| Ry | (1.12)
In2 | InR,
Equivalently,

. 1 (In(C;, +S2,
azg(cln’Sln»C2n>S2n)=lnz(ln(cz2 +S§ L
1n In

. (1.13)

Remark 1. In the special case when 4 in the model is assumed known, a new “centered" X" can
be defined to be (X - #) and the corresponding new 6 as (X" mod 27). In this case, the
estimated mean directioné_'0 is replaced by the known mean direction A in (1.10) and (1.11). The

estimation of & proceeds exactly as in (1.12). This is analogous to the case of estimating the
variance in a normal distribution in the case of a known mean. i

One would cxpect to see some gain in the estimation of a . Unfortunately our simulations
indicate such a gain was minimal at best and in any case it is not such a practical case.
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2. Asymptotic Properties of the Estimator
Since in (1.9), we are dealing with the sums of i.i.d. random variables with finite variance, by
the strong law of large numbers we know that C, -»u. , C,, > p . and

Syp>Soy >t g =t s, =0 almost surcly as n-—oo. Strong consistency of the estimator
2(C,,. 81,:Cy,» 8y, )10  follows by noting that g is continuous and g(u) = where
H= (oo Mg Hey M s,)

Further, an application of the multivariate central limit theorem yields

d
Jn((C,,S,,Cy,8,) =) >N@O,Z), n—>w @.1)

d
where ¥ is the matrix of covariances and —> denotes convergence in distribution. Let
c=(n2)".

i d
Theorem 2.1 As n—>w, Jn(@—-a) - N (0,0 %), where
1 , 1

2 1 2
0_2 =g (? O'cl + pz(a+1)22a O-Cz = p(2¢+1) > O—C],Cz ), (22)
with
1+ p*
0%, = Var(eos(®) =—2—~ ", o
2 1+p4a g+
O¢, = Var(cos(20)) = —2—— p ) 2.4)
. and
prAp_ en

Cec, = Cov(C,, C) =—F=p*™, (2.5)

2

Proof. Using the delta method (see Rao (1985, pp387, (6a.2.6)), we get

(@ -a)y>N©.0),
as n—» oo where

o’ = Var@) = g5, (W0¢, +8¢,(1)0¢, +28¢, (1ec, (1)0¢, ¢, 2.6)
where g (x,y) denotes the derivative of ¢ w.r.t. x etc. Note that the terms in S, and .S, do not
appear in (2.6) due to the fact that g, (u)=gg (#)=0. (2.2) now follows from (2.6) by
evaluating the derivatives of g.
Calculating variances of C, and C, is quitc easy:

E[(€"®)?] = E(cos(8) +isin(0))* = E(cos®(8) - sin’ (§) + 2icos(8)sin(8)).

Also E[(e?)*]=El[e"]= p* .
Equating real and imaginary parts we get £(cos>()—sin*()) = p*.
This together with E(cos () +sin’(d)) =1 gives
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1+ %

2 ,
This together with (1.6) gives.(2.3), o7, can be calculated similarly.
We now evaluate, Cov(C,,C,). : -

E[cos®(8)] =

E[e'a mj p it 2.7
Expanding the L.H.S gives us
‘ E[cosé cos 26 - sinf sin 26] = p* (2.8)
Similatly, :
‘ Efcosd cos 26 +sindsin 2] = p (2.9)
Adding (2.8) and (2.9) gives
"
Elcos@cos 20] = "’—2”4‘?— (2.10)
Thus,
L& )
Cov(C,,Cy) = %’3 — o @.11)

This proves Theorem 2.1
A straightforward but important corollary of the above theorem is the following;

Corollary 2.2 An approximate 100(1-7)% confidence interval for o for a large enough saniblé_
of size » is given by

27/20-

[max(c: - v ,0), min(& + f- 2)], (2.12)

whete z,, is such that P(Z > z,,,)=y/2, and Z is a standard normal random variable.

3. Computational Results ' , ‘
Simulation of stable random variables is done using the Chambers, Mallows and Stuck
method (see Samordnisky and Taqqu (1994)). The location parameter u is taken to be zero and
the scale parameter o is taken to be unity. There are two pafts' to this gection on computatiéna_l
results. Table I give the theoretical asymptotic variances o’ and length of the confidence
ifitervals for vatious values of o for sample sizés »=1000 atd » =10,000 Next we simulate
1000 samples with the above two choices of sample size. Table II list the actual value of o, the
average of the estimate ¢ and mean square errors over 1000 samples and the average length of
the 95% confidence intervals. Table III compares the average and MSE of the McCulloch's
estimator and the estimator using wrapped stable proposed in this papet.
In the above simulation, for the cases o =0.2, and 0.3, out of the 1000 samples there were 18
and 1 samples respectively for which the estimate of alpha turned oul 1o be negative. These
samples were dropped from the study. Likewise, for the values of & ranging from 1.4 to 1.9 the




16 Stochastic Modelling and Applications

number of samples for which the estimate was found to be greater than 2 (and hence was taken to
be equal to 2), were 4, 8, 40, 58, 108, and 137 respectively.

With samples of size 10,000 there were no negative estimates as in the previous case. For «

values 1.7, 1.8, and 1.9 out of the 10,000 samples 1, 24, and 159 samples had values of estimate
greater than 2. Another point to be noted is that for extreme values of «, the Confidence Interval

(CI) may not be symmetric around a.

4. Comparison with other Estimators

We compare the average of the estimates of o and the corresponding MSE of the
McCulloch's estimator with the above estimator (see Table IIT). The size of the sample is taken to
be 1000 and we replicate 10,000 times. The data for the McCulloch's estimator which is a
quantile based method is taken from Adler, Feldman and Gallagher (1998): Since the number of
replications (10,000) is fairly large, we feel that the fact that the samples are different do not
really matter. McCulloch's estimator has a performance comparable with methods based on the
characterestic function. McCulloch's estimator has a slightly lower MSE for smaller values of «
as compared to the characterestic function based estimators while the roles are reversed for values
of a close to 2 (Kogan and Williams, 1998). Further, these methods are much superior in
performance to methods based on extreme value theory, for symmetric stable distributions.
The most atfractive feature of the proposed estimator is the ease of computation and
independence from tables as in the case of the McCulloch's estimator. The McCulloch's estimator
has a lower MSE than the estimator proposed in this paper. The estimator based on wrapped
stable distribution performs better marginally than the method based on extreme value theory
(Hill-type estimator) for & =1.0 and 1.2, while its performance is much superior for  close to
2 (compare Kogan and Williams (1998), Figure 4a with Table III). Further, for the Hill estimator,
the optimal choice of the number of largest order statistics to be used (k) is a compromise between
the bias and the MSE. Choosing & to minimise MSE will result in larger bias and vice-versa
(Pictet, Dacorogna and Muller (1998)).
It must be mentioned here that in the absence of any asymptotic results or the estimator having
infinite variance, the MSE does not have much use. With the estimator proposed in this paper, we
can construct confidence intervals and carry out inference.
An important application of the asymptotic normality of our estimator is that it can be used to test
if a sample is from the stable family. This can be done as follows: Divide the data set into three
parts, the last two parts being of equal size. Let n, and n, be the sample sizes in the first and

second parts. Let &, be the estimate for ¢ from the first part.

Next we estimate « from the data (x,, +x,,)/2, where x,, is the ith sample observation from
the kth part. Call this estimate ¢,. If the original data is from a symmetric stable, then the two
estimates ¢, and &, should be close. This test can be carried out using the asymptotic result of
Theorem 2.1. A study of the efficacy of this procedure is being carried out.
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Table I
Asymptotic variance and length of 95% CI for sample sizes n=1000 and n=10,000
a Asymptotic Variance Length of 95% CI
n=1000 n=10,000 n=1000 n=10,000

0.2 0.009 0.0009 0.389 0.123

0.3 0.009 0.0009 0.391 0.123

0.4 0.010 0.0010 0.395 0.124

0.5 0.010 0.0010 0.399 0.126

0.6 0.010 0.0010 -0.406 0.128

0.7 0.017 0.0011 0415 0.131

0.8 0.011 0.0011 0.427 0.135

0.9 0.012 0.0012 0.422 0.140

1.0 0.013 0.0013 0.462 0.146

11 0.015 0.0015 0.489 0.154

1.2 0.017 0.0017 0.523 0.165

1.3 0.020 0.0020 0.567 0.179

14 0.025 0.0025 0.625 0.197

1.5 0.031 0.0031 0.699 0.221

1.6 0.041 0.0041 0.797 0.252

1.7 0.055 0.0055 0.763 0.292

1.8 0.078 0.0078 0.748 0.346

1.9 0.113 0.0113 0.761 0.309

Table IT
Coverage probabilities calculated using 1000 samples of sizes n=1000 and n=10,000 each
a Median of & Average of @ MSE Coverage Prob. | Average Length
of 95% CI
n=1000 n=1000 N=1000 n=1000 n=1000
n=10,000 n=10,000 n=10,000 n=10,000 n=10,000

0.2 0.201  0.199 0.210 0.199 0.0091 0.0010 |0.966 0950 [0.358 0.123
0.3 0.294 0.301 0.295  0.300 0.0099 0.0010 (0949 0955 [0.384 0.123
04 0.392  0.399 0.392  0.398 0.0101 0.0011 [0.944 0938 (0394 0.124
0.5 0.501 0.501 0.500 0.501 0.0103 0.0011 [0.956 0953 [0.400 0.126
0.6 0.599  0.598 0.597  0.598 0.0101  0.0011 [0.970 0944 [0.407 0.128
0.7 0.694 0.700 0.695 0.609 0.0110 0.0011 [0.954 0954 |0.416 0.131
08 0.800 0.799 0.797  0.797 0.0116 0.0011 [0.958 0955 [0.429 0.135
0.9 0.896  0.900 0.898 0.899 0.0140 0.0013 (0942 0938 [0.445 0.140
1.0 0.995 0.997 1.001  0.997 0.0133 0.0015 0966 0.950 [0.467 0.146
1.1 1.091  1.099 1.093  1.098 0.0149 0.0015 [0.962 0956 [0.493 0.154
12 1.195  1.196 1.198  1.197 0.0187 0.0020 |0.950 0.936 [0.532 0.165
1.3 1.285 1.299 1.289  1.300 0.0219 0.0020 0953 0.958 [0.573 0.179
1.4 1374 1.397 1.384  1.399 0.0256 0.0027 (0948 0.949 [0.622 0.198
1.5 1.468 1.499 1.483  1.500 0.0302 0.0031 [0.938 0952 (0672 0222
1.6 1.567 1.594 1.582  1.599 0.0358 0.0042 (0943 0954 (0714 0254
1.7 1.633  1.693 1.647 1.697 0.0382  0.0053 0926 0958 [0.734 029
1.8 1.698 1.789 1.707  1.794 0.0441 0.0076 |0.887 0.950 [0.750 0.316
1.9 1.733  1.891 1.743  1.885 0.0563 0.0078 [0.866 0.942 [0.760 0.305
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Table III
Comparison of Mean and MSE (in parantheses) of 10,000 estimates of K using samples of
size 1000. (Source: Adler, Feldman and Gallagher (1998))

S McCulloch’s Estimator Estimator Based on Wrapping
0.6 0.633(0.00157) 0.601(0.01081)
0.8 0.804(0.00131) 0.799(0.01216)
}.0 1.002(0.00192) 0.998(0.01412)
16 1.606(0.00505) 1.576(0.03591)
1.8 1.808(0.00874) 1.710(0.04271)
References

Adler, R.J., RE. Feldman, and C.Gallagher (1998). Analysing Stable Time Series, A Practical Guide to
Heavy Tails. In Adler, R.J., Feldman, R.E., Taqqu, M.S. (Eds.), 133--158.

de Haan, L., and SI Resnick (1980). A simple asymptotic estimate for the index o of a stable
distribution. Journal of Royal Statistics Society B, 83-87. -

Dekkers, A.LM., and L. de Haan (1989): On the estimation of the extreme-value index and large quantile
estimation. Annals of Statistics, 17, 1795-1832.

Dekkers, A.LM., J.HJ. Einmahl, and L, de Haan (1990): A moment estimator for the index of an extreme
value distribution, Annals of Statistics, 17, 1795-1832. ' '

Deo, R. (2000). On estimation and testing goodness of fit for m-dependent stable sequences, Journal of
Econometrics, 99, 349-372.

DuMouchel, W.H. (1973). On the Asymptotic Normality of the Maximum-Likelihood Estimate when
Sampling from a Stable Distribution," Annals of Statistics, 3, 948--957.

Drees, H. (2001). Minimax Risk Bounds in Extreme Value Theory. Annals of Statistics, 29, 266-294.

Drees, H. and E. Kaufmann (1998). Selecting the optimal fraction in univariate extreme value estimation.
Stochastic Processes and their Applications, 75, 149-172. : '

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. 2. John Wiley and
Sons, New York, NY, 3" Edition. Y

Fama, E., and R. Roll (1971): Parameter Estimates for Symmetric Stable Distributions, Journal of the
American Statistical Association, 66(334) 331--338.

Gatto, R., and S. Rao Jammalamadaka (2001). Inference for Wrapped Symmetric K-Stable Circular
Models. Submitted. . -

Hall, P., and A. H. Welsh (1985). Adaptive Estimates of Parameters of Regular Variation. The Annals of
Statistics, 13, 331-341. :

Jakeman, E., and P.N. Pusey (1976). A Model for Non-Rayleigh Sea echos. IEEE Transactions on
Antennas and Propagation, 24(6), 806--814.

Jammalamadaka, S. Rao, and A. SenGupta (2001). Topics in Circular Statistics, World Scientific Press,
Singapore.

Koutrouvelis, LA. (1981). An lIterative Procedure for the Estimation of the Parameters of Stable Laws,
Communication in Statistics-Simulation and Computation, 10(1), 17--28.

Koutrouvelis, LA., and Bauer, D.F. (1982). Asymptotic distribution of regression type estimators




Estimate of the Index of Stability . 19

of parameters of stable laws, Communications in Statistics-Theory and Methods, 2715-2730.

Kogan, S.M., and D.G Manolakis (1996). Signal Modeling with Self-Similar ¢ -Stable Processes: the
Fractional Levy Stable Motion. IEEE Trans. on Signal Proce;ssing,ﬂ44(4), 1006--1010. N

Kogon,8.M., and D.B. Williams (1998). Characteristic Function Based Estimation of Stable Parametérs. 4
Practical Guide to Heavy Tails, in Adler, R.J., Feldman, R.E., Taqqu, M.S. (Eds.), 311 --335. :

Mandelbrot, B.B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36, 394--419.

McCulloch, J.H. £1986). Simple Consistent Estimators of Stable Distribution Parameters. Communication
in Statistics-Simulation and Computation, 15(4), 1109--1138.

Pickands Il J., (1975). Statistical inference using extreme ordér statistics, The Annals of Statistics. 3(1),
119-131.

Pictet, O.V., M.D. Michel, and U.A. Muller (1998). Hill, bootstrap and jacknife estimators for heavy tails.
A Practical Guide to Heavy Tails, In Adler, R.J,, Feldman, R.E., Tagqu, M.S. (Eds.), 283--310.

Stuck, BK., and B. Kleiner (1974). A Statistical Analysis of Telephone Noise. Bell Systems Technical
Journal, 53, 842--846. '

Rao, C. R. (1985): Linear Statistical Inference and its Applications, John Wiley and Sons, New York, NY,
2nd Edition.

Resnick, 8. (1997): Heavy Tail modeling and teletraffic data. Annals of Statistics.

Resnick, S. (1998): Why Non-linearities can ruin the Heavy-tailed Modeler's day. A practical guide to
heavy tails, In Adler, R.J., Feldman, R E., Taqqu, M.S. (Eds.), 219-240.. s

Samorodnitsky, G., and M.S. Taqqu (1994): Stable Non-Gaussian Random Processes: Stochastic Models
with Infinite Variance, Chapman & Hall, New York, NY. B AT Ealln e

Zolotarev, V.M. (1986): One-dimensional Stable Distributions. American Mathematical Society,
Providence, RI. '




